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Abstract

The continuous advancement in science and technology necessitates the
development of engineering materials tailored to specific requirements and
cost-effective with minimal energy consumption. Consequently, there has
been a surge in research dedicated to the fabrication of composite materials.
Traditionally, the inclusion of synthetic fibers like glass or carbon is a common
practice to reinforce composites and impart the necessary properties.
However, their slow biodegradability poses environmental concerns, driving
interest in natural fibers as substitutes. Rice husk (RH), a byproduct of rice
milling, stands out as one of the most abundant agricultural wastes globally.
Incorporating rice husk into polymer matrices is cost-effective and offers
improved mechanical properties, low density and biodegradability etc.
Various surface treatment techniques like alkaline treatment, benzoylation,
acetylation and silane treatment etc., are explored to improve the integration
of rice husk with base polymer, thereby imparting improved mechanical
properties to composites. The present article provides an extensive review
of literature regarding the prospective use of rice husk as reinforcement in
various polymer matrices, highlighting primarily the mechanical attributes
of polymer composites. Existing literature spanning the last 20 years has been
extensively explored to analyse the impact of utilizing RH on the mechanical
attributes of RH-reinforced polymeric materials. Future research directions are
also highlighted, emphasizing the need for further exploration and optimization
of rice husk-based composites for diverse industrial applications.
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that are both strong and light weight, tailored
to specific requirements and cost effective with
minimal energy usage. The need for such high
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performance engineering materials has prompted
a lot of research in developing composite materials.
Recently, the composite sector has been expanding
swiftly and has made a substantial impact on the
materials industry. Composite materials result from
the blending of two or more materials which may
differ physically and chemically from each other
but on combining create a product with optimal
properties suitable for particular tasks. Specifically,
polymer composites consist of a base polymer resin
combined with various additives to achieve particular
functions or objectives."

Conventionally, synthetic fibers like glass or carbon
fibers are utilized for reinforcing composites and
for providing desired properties. However, in this
era of global environmental awareness, the main
disadvantage of these composites is their slow
biodegradability. The need for sustainable develop-
ment has fostered an inclination towards the
utilization of natural alternatives instead of synthetic
fibers such as glass in polymer composites.
Researchers are recently focussing on natural fibers
because they are biodegradable, readily available,
economical, and lightweight.?

Natural fibers are grouped into two primary classes
based on their source i.e. animal fibers and plant
fibers. Plant fibers have gained more attention in
research. Previous studies have reported a variety
of plant fibers, including bast, wood, seed, leaf, fruit
and grass or stalk fibers, etc.*

Employing natural fibers in composites offers
several important benefits such as affordability,
sustainability, lightweight nature, non-hazardous
characteristics, non-abrasiveness, biodegradability,
and recyclability.?56 Despite this, the integration
of natural fibers presents certain disadvantages
including susceptibility to deterioration within the
processing temperature range of the polymer matrix.

This early thermal breakdown of agro-fibers
imposes constraints on the permissible processing
temperature, restricting it to below 200°C, thereby
limits the range of polymers compatible with agro-
fibers.'” Additionally, when designing composites
with agro-fibers for specific applications, it is crucial
to account for other factors, like their inadequate
moisture resistance. The hygroscopic nature of
cellulose, the chief component in plant fibers, leads to
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changes in dimensions and subsequent degradation
in mechanical performance of the composite.>-°
Integrating the fibers into the polymer with a strong
bond is essential to reduce these detrimental effects.
The introduction of compatibilizer can prove to
be an effective strategy for attaining such strong
adhesive forces. Among various compatibilizers e.g.
maleic anhydride grafted polymers, silane coupling
agents, epoxy resins, organosilanes, isocyanates
etc.,""% the maleic anhydride-grafted polypropylene
(MAPP) has frequently been employed to enhance
the adhesion at the interface of polymer matrices
and agro-fibers. However, the continuous research
is going on in exploring new alternatives.'6"7

In this comprehensive review, the main focus is
on the employment of rice husk (RH) in polymer
composites. Paddy (unmilled rice) is among the most
extensively harvested crops in the world leading
to significant agricultural waste in the form of rice
stalks and husks. Rice husk, a significant agricultural
byproduct in major rice-producing nations, is
generated as a secondary product during the rice
milling process.'® In the milling of raw paddy, the rice
kernel is physically separated from other components
like edible parts such as the germ and bran, as
well as the inedible part, namely the rice husk.®"

Despite their abundance, rice husk (RH) is usually
discarded as waste and burnt in the fields, which
causes environmental concern due to the release
of toxic emissions, ashes, and vapours contributing
to atmospheric contamination.?® Recognizing the
environmental impact, it becomes necessary to
explore the use of RH in polymer composites.
Figure 1 illustrates the various applications of RH in
polymer composites. The inclusion of RH in polymer
matrices leads to superior attributes, including
toughness, decreased weight, eco-friendliness,
flame retardancy, and resistance to atmospheric
conditions. Moreover, this integration makes the final
products cost-effective.??'2 The use of extracted
silica from rice husk has demonstrated success
in enhancing the mechanical characteristics of
composites.?* The present study primarily centres
on reviewing the literature related to the mechanical
attributes of polymer composites strengthened with
rice husk with a particular emphasis on assessing
the effectiveness of various treatment methods in
enhancing the compatibility of the base polymer
and the RH filler.
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Fig. 1: Applications of RH in polymer composites.

Rice Husk Composition

Rice husk is mainly composed of cellulose that
features a broad spectrum of dimensions.?® It
comprises of hemicellulose, cellulose, silica, lignin,
solubles and moisture. The percentage composition
and physical characteristics of RH are detailed in
Table 1.181926

Table 1: Percentage Composition and Physical
Characteristics of Rice Husk.

Components Percentage
Composition (%)

Cellulose 25-48

Hemicellulose 18-25

Lignin 12-31

Silica (SiO,) 15-17

Solubles 2-5

Moisture Content 5-10

Physical Characteristics of Rice Husk

Particle size 20-50 (um)
Surface Area 1-50 (m?/g)
Density 0.09-3 (g/cm?)

Rice husk primarily comprises elemental substances
like Carbon 37.05%, Hydrogen 4 to 5%, Oxygen
31 to 37%, Nitrogen 0.23 to 0.32%, Sulphur 0.04
to 0.08%, Silicon 9.01% and Silica 17 to 25%, ash
22.29%, bulk density 0.09 to 3 (g/cm?®) and hardness
5 to 6 (Mohr’s scale).?-?° Different researchers
have reported different compositions of the Rice
Husk. It relies on several factors such as the rice
variety, climatic conditions, fertilizer type, soil
properties, testing methods, and the production
area's geography. 8193031

Research has demonstrated rice husk to be
composed predominantly of organic matter, comp-
rising about 75 to 90% lignin and cellulose, with the
remaining portion consisting of mineral elements
like silica, alkalis, and minor constituents.8.19.26.32.33

Several methods have been reported by the
researchers for the analysis of lignocellulosic bio-
mass composition.®>** Krasznai et.alP* presented
a historical perspective on various compositional
analysis techniques and their detailed progress
over time, including the Weende Method (1859),
the Klason Method (1923), the Saeman sulfuric
acid method (1944), the Saeman gravimetric
method (1954), and the Laboratory Analytical
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Procedures (LAPs) designed by the National
Renewable Energy Laboratory (NREL) (2000).
Cai et.al® classified the methods of compositional
analysis into three categories: analysis by sulfuric
acid (H,SO,) hydrolysis; analysis by Near Infrared
Spectroscopy (NIRS); and analysis by kinetics on
thermogravimetry (TG). Sluiter et.aP® determined the
structural carbohydrate and lignin content in biomass
using NREL Laboratory Analytical Procedures based
on sulfuric acid hydrolysis. Jin et.aP® reported the
compositional analysis of rice straw using NIRS.
Cai et.al" also reported various methods of analysis
using kinetics based on the distributed activation
energy model. In a recent study, Malik et.aF? reported
the analysis of rice husk biomass composition
(cellulose — 38%, hemicellulose — 21%, lignin — 17 %,
ash — 15%, extractives — 8%, moisture content —
9.8%) using NREL standard methods.

Since, rice husk contains a similar quantity of
cellulose but lower lignin and hemicellulose levels
compared to wood, it can be subjected to higher
processing temperature than wood."'® Chemical
examination of the non-organic part of rice husks has
indicated that silica is the predominant component in
its non-crystalline form, with small amounts of alkali
and alkaline earth metal oxides, iron and aluminium
oxides.3*3' Rice husk exhibits exceptionally high ash
content (10 to 20 %) in contrast to other biofuels. The
ash consists predominantly of silica, ranging from
87% to 97%, is highly permeable and has low density
along with an extensively large external surface
area."? Its considerable silica content makes it a
key material for industrial use."

The rice husk serves as the tough outer layer
enveloping the rice kernel, mainly covered in silica
and marked by a thick outer layer and surface
bristles. Additionally, a small portion of silica
can be found in the central layer and the inner
surface layer. The significant silica concentration
in rice husk contributes to its enhanced rigidity and
effective flame resistance.'®?'%" Differences in the
hemicellulose, cellulose, and lignin composition
within rice husks from various rice varieties lead
to variations in the mechanical characteristics of
reinforced polymer.™

Surface Treatment Methods
A significant challenge has been observed in the
preparation of RH composites which is attributed to
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their limited compatibility with hydrophobic matrices,
primarily because rice husk has a hydrophilic nature
and contains natural fats and waxes. Efficient
integrations at the junction of rice husk and the
base polymer are essential for ensuring effective
stress distribution from the polymer structure to the
strengthening material. This consequently leads
to enhancements in the mechanical attributes of
polymer blends containing rice husk.

According to research conducted by Yang and Kim,*
RH-filled polypropylene-based composites have
shown increased brittleness and reduced tensile
strength, highlighting the adverse effects of low
compatibility between RH and the matrix material.
To resolve this issue, researchers have explored
and suggested different pre-treatment methods.
Depending upon the mode of action, the existing
pre-treatment methods can be broadly categorized
as follows:

Physical Pre-Treatment Methods

These approaches seek to alter the physical
properties of the fiber, like its surface morphology,
roughness, and porosity, without modifying its
chemical composition. These methods include
different processes such as the treatment of fibre
surface with hot water, with high pressure steam
followed by a rapid depressurization process,
repeated freezing-thawing process, and exposure
to ionized gas (Plasma treatment) etc. These
processes modify the structural characteristics of the
fiber and increase the accessibility of reactive areas
of the fiber and the base polymer. Better interaction
between the reactive sites of the additive and the
base polymer results in enhanced adhesion and
wetting which results in improved physical attributes
of the blend. The appropriate pre-treatment method
is determined by the distinctive features of fibers
and the essential attributes of the resulting polymer
blend. Hot water treatment helps to remove the
surface impurities like oils, waxes, dust, and can
partially remove the hemicellulose, which makes
the fiber surface more accessible for bonding
with hydrophobic polymer.3*4% Steam treatment
subjects natural fibers to high-pressure steam,
followed by rapid depressurization. This process
causes the rupture of the lignocellulosic structure,
removes a portion of the lignin and hemicellulose,
which makes the fiber more porous with increased
surface area and enhances its bonding potential
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with the polymer.'"194142 Steam treatment has been
successfully employed by the researchers on rice
husk to enhance the compatibility of the filler in
particle board production and composite panels
with enhanced mechanical properties.” Panels
made of rice husk treated with steam and phenol
formaldehyde possess enhanced interfacial bonding
and hence show superior modulus of rupture and
elasticity compared to those treated with alkali.43
The freeze-thaw process subjects natural fibers to
repeated cycles of freezing (usually at temperatures
below -20°C) and thawing (at or slightly above
room temperature). The freezing process causes
the moisture inside the fibers to swell, which forms
the tiny fractures and amplifies surface roughness.
Subsequent thawing releases the water, resulting in
a more porous, rough-textured fiber surface, which
leads to enhanced mechanical interlocking with
the polymer.** In the past few years, the plasma
treatment has proven to be a powerful tool for
enhancing the binding properties between natural
fibers and polymers. Plasma treatment'®“5 subjects
the natural fibers to a plasma environment, which is
created by applying energy commonly via an electric
field to a gas such as nitrogen, oxygen, argon,
helium etc. leading to the ionization of gas and the
generation of reactive entities (free radicals, ions,
electrons, and neutral atoms or molecules etc.).
The type of reactive entities produced and their
concentration depends upon the selection of gas and
the operating conditions. Plasma treatment abrades
the fiber's outer layer, which results in enhanced
surface texture. It may introduce new functional
groups (carbonyl, carboxyl, hydroxyl, amine etc.)
onto the surface of the fiber, which may react with
the base polymer, considerably improving adhesion
at the interface. Additionally, plasma may induce
cross-linking within the polymer networks on the
surface of the fiber, leading to more stable linkages
at the interface of the fiber and the polymer. Several
studies'®-1931:4145-47 have highlighted the beneficial
impact of plasma treatment on the binding strength
between natural fibers and base polymers. This
process is both safe for health and the environment,
and it effectively enhances the surface properties of
fibers. However, due to the requirement of expensive
and specialized equipment, it has not been explored
for large scale production of composites.'54%
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Chemical Pre-Treatment Methods

Different chemical pre-treatment methods have been
reported by researchers to strengthen the linkage
between the fiber surface and the polymer base
such as alkaline treatment known as mercerization,
acetylation, the addition of compatibilizers e.g. maleic
anhydride, benzoylation, silane treatment, peroxide
treatment and permanganate treatment etc.'484°
Of the various chemical treatments available, the
alkaline treatment, known as mercerization, is
especially notable for its efficacy and affordability.'®1°
When subjected to alkaline treatment using a NaOH
solution, the fiber undergoes a process where its
inherent fats and coatings are eliminated from the
outer layer. This action exposes the reactive sites
of the fiber, enhancing its ability to interact with the
matrix material.'8194350-% A significant decrease in
hemicellulose and lignin content on treating with
(2 to 8% weight to volume) NaOH solution has
been reported.’®'%" The process of mercerization
enhances the surface texture of the fiber which
connects more efficiently to the polymer structure
and enhances the physical performance of the
blended material. The physical characteristics of
the hybrid material depends on variables like alkali
concentration, treatment temperature, and treatment
duration.%"

Benzoyl chloride is another chemical frequently used
in fiber treatment, in addition to alkaline processes.
Benzoylation involves the introduction of a benzoyl
functional group at the fiber’s surface, which reduces
the moisture affinity of the fiber and enhances
its interaction with the non-polar base polymer.%8
Alkaline and benzoylation treatments have been
studied on rice husk by various researchers.®5°
Chemical treatment of rice husk with acetic anhydride
i.e. acetylation has also been reported for increasing
hydrophobicity of fibers obtained by cross-linking
of acetic anhydride with hydroxyl groups of rice
husk.¢%6" The procedure of acetylation induces
plasticization in cellulose fibers. It also enhances
the size stability and water resistance of the polymer
blend. It has been observed that the application
of benzene diazonium salt to RH diminishes its
hydrophilic properties and improves its integration
with the polymer material.'"18.1
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Maziad et al.5? explored how including a silane
bonding agent influenced the properties of a polymer
base strengthened with rice husk. They revealed that
the treatment of rice husk with silane led to superior
mechanical performance compared to non-treated
samples. In an another study,%® the incorporation
of silane-treated rice husk into a polymer matrix of
natural rubber exhibited a small enhancement in
both flexural and tensile strength in comparison
to those treated with the alkaline medium. In the
bifunctional configuration of silanes, the alkoxysilane
part engages with the hydroxyl groups, while the
other terminal group participates in copolymerization
with the polymer base. These chemical interactions
promote the efficient distribution of loads across
the filler and the polymer resin, thereby yielding a
material characterized by enhanced mechanical
properties.'®

It has been reported that rice husk and rice straw
composites exhibit improved performance when
compatibilizers such as maleic anhydride are
incorporated.'49%96264-67 Rosa and co-authors®”
prepared maleated polypropylene (MAPP) compo-
sites with a maximum of 40 weight% loading of rice
husk. As per the study, the integration of MAPP
enhanced both the loss modulus and storage
modulus of the product. Compatibilizers possess
both hydrophobic and hydrophilic functional
groups that interact with the reinforcement and the
polymer to enhance their compatibility, resulting
in better bonding and superior mechanical traits
of the blended materials."® Research studies®-"!
have reported the method of permanganation
where mercerized cellulose fibers were soaked in
acetone solutions containing varying amount of
potassium permanganate (KMnO, ). Permanganate
treatment establishes radical centers within the
cellulose present in natural fibers, which enhances
its interaction with the base polymer. In addition to
these methods, other compatibilizers and treatments
including stearic acid, isocyanates, sodium chlorite
and triazine derivatives, etc. can be used for treating
cellulose depending upon the specific requirement
in the corresponding composites.™

Though chemical methods are effective, they lead
to issues like environmental effects, workplace
safety, and managing toxic waste. The use of toxic
chemicals also prompts regulatory and health
concerns. Despite these drawbacks, chemical
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methods are still commonly used due to their
confirmed efficiency and consistency in commercial
production. To lower their ecological impact, it is
essential to seek greener chemical alternatives and
optimize waste management strategies, balancing
their benefits with a reduction in environmental
damage.’®

General Applications of Rice Husk

Rice husk (RH) possesses a high calorific value of
15217.20 KJ/Kg, and boiler efficiency comparable
to that of coal. Therefore, Rice Husk proves to be a
more cost-effective fuel than coal.” The heat energy
generated through the ignition and gasification of RH
may be applied in multiple applications e.g. in steam
generation and electricity generation.”" Rice Husk
exhibits good potential for electricity generation,
as 1 ton of RH can produce 1 MWH of electricity.
Additionally, it can also function as a substitute
energy source for domestic power requirements.
Due to the high silica (silicon dioxide) amount found
in RH, it has emerged as a valuable resource for
various silicon compounds. RH is also utilized in
the preparation of advanced materials such as SiN,
silanes, SiC, Mg,Si, Si,N,O, elemental Si etc.”>
Rice husk can be employed as an organic fertilizer
to enhance the crop yield as well as water utilization
efficiency in agricultural fields. Because of the high
content of dietary fibre (more than 30%), rice husk
proves to be an abundant provider of proteins and
minerals, rendering it a viable ingredient in the
creation of functional foods. Utilization of rice husk
in brick production increases porosity, which results
in to superior thermal insulation.”” Studies have
shown that rice husk can be processed to generate
activated carbon with a microporous structure via
physical or chemical activation methods.”®-®' Rice
husk possesses insolubility in water, good structural
strength and excellent chemical stability because of
the high content of silica. This characteristic qualifies
it for an important role in the purification of water
and wastewater treatment. Sorbents derived from
rice husk have been found effective in removing
six heavy metals, including Cu, Fe, Cd, Mn, Pb and
Zn.®2 Additionally, rice husk acted as an excellent
adsorbent for eliminating various contaminants
like pesticides, colorants, phenolic compounds,
organic substances etc.%84 Rice husk has also been
recognized as a successful source for bioethanol
production.'76:85
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Mechanical Characteristics of Polymer Compo-
sites Reinforced with Rice Husk

Reported studies showing the influence of
increasing Rice Husk (RH) loading on mechanical
characteristics of reinforced polymer composite
have been tabulated in Table 2. The mechanical
characteristics examined include tensile modulus,
flexural modulus, tensile strength, impact strength,
and elongation at break. These properties are very
important indicators of a material’s performance in
various applications. Existing literature spanning
the last 20 years has been extensively explored
to analyse the contribution of utilizing RH to the
mechanical characteristics of RH-integrated polymer
composites.

Table 2 reveals that higher loading of untreated
rice husk in composites leads to increased tensile
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Fig. 2: Tensile strength of PP composites at
various loading of RH®*®
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modulus and flexural modulus, accompanied
by a decline in tensile strength, impact strength,
and elongation at break. The variation of tensile
strength with higher loading of RH content has
been shown graphically (Figure 2) by Yang et al.®®
It was proposed that the decline in tensile strength
with higher rice husk flour content is because of the
weak interaction at the interface of the non-polar
base polymer and the hydrophilic filler. The addition
of compatibilizers significantly improved the tensile
strength as shown (Figure 3) by Yang et al.®® for
tensile strength of RHF (30 wt%) reinforced PP
composites at different contents of compatibilizers.
Similar results for tensile and flexural strength
(Figures 4 a & b) have also been reported by Raghu
and co-authors'® for PP/RH composites.

30 T

T T T — )
f | o
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]
o
=
o
0
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®
=
& —0— E-43
O G-3003
(- . : : ; :
e 4. 2 JH e

Compatibilizing Agents Content (wt.%)

Fig. 3: Tensile strength of PP/RHF (30 wt%)
with weight percent of compatibilizing agents®

HControl ®WithMAPP  ® Withm-tmi-g-PP

Flexural Strength (N/mm?)

10 20 10 50
Fiber Loading (%)

Fig. 4: (a) Tensile strength and (b) Flexural strength of PP/RH composites with untreated PP;
Polypropylene grafted with MAPP; and Polypropylene grafted with m-TMI-g-PP compatibilizers'®
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It was found that the inclusion of compatibilizers
enhanced the flexural and tensile properties
of composites effectively. The action mechanism of
compatibilizer (Figure 5) has been proposed by Yang
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et al.® It has been suggested that the compatibilizers
form chemical bonds with the hydrophilic filler and
are integrated into the polymer matrix by wetting.

Lignocellulosic filler + Polymer e Bio-composite
+1] o 1]
J
—_
JOEJ, d JQEJ, B
J J Q\

J

Lignocellulosic filler + Compatibilizing agent + Polymer

!
& Q
\ # +
JQEJ, J
4 N,
/Q

J

—» Bio-composite

Chemically linked with strong interfacial bonding H Wetting |

Fig. 5: The action mechanism of compatibilizer in enhancing affinity at the interface
of hydrophobic base polymer and hydrophilic filler?®

From various reported results (Table 2), it can
be interpreted that incorporation of pre-treated
or modified rice husk or compatibilizers leads to
enhanced mechanical performance of the polymer
blend. Pre-treatment or modification of rice husk
and inclusion of compatibilizers is very crucial in
enhancing the mechanical characteristics of RH-
reinforced composites. It facilitates better adhesion
of RH-filler with the base polymer thereby improves
the interfacial bonding and overall composite
performance. Toro and co-authors®” analysed the
influence of adding the compatibilizer PP-g-MMI to
RH/PP-Co-PE (rice husk-reinforced poly(propylene-
co-ethylene)). The inclusion of 5 wt% of PP-g-MMI
to RH/PP-Co-PE resulted in a significant increase
in tensile modulus, from 715 MPa to 1181 MPa,
and tensile strength, from 16 MPa to 28 MPa. The
Scanning electron microscopy (SEM) analysis

indicated enhanced adhesion and greater phase
consistency at the interface of RH and PP-Co-
PE components within the composite, which was
attributed to the inclusion of PP-g-MMI. Similarly,
Razavi-Nouri and co-authors® investigated the
mechanical performance of chopped RH (CRH)
in PP. The formulation containing 3 php (part per
hundred parts of polymer) of MAPP and 40 php of RH
exhibited a notable increase of approximately 33% in
tensile modulus, 16% in flexural strength, and 100%
in flexural modulus, while the decrease in the impact
strength was negligible. Further, Premalal and his
team?® evaluated the mechanical performance of
PP strengthened with rice husk powder and talc.
They found that increasing the loading of both fillers
improved Young’s modulus and flexural modulus
but reduced yield strength and elongation at break.
At similar loading levels, talc enhanced the moduli
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and yield strength more effectively than the rice
husk powder. This difference was attributed to talc's
finer particle metrics and greater surface profile,
which enhanced the bonding at the interface of
the reinforcing material and the polymer substrate.
In addition, Rosa et al.®” explored the impact
of maleated polypropylene (MAPP) on polypropylene
composites strengthened with rice husk flour. The
inclusion of the compatibilizer MAPP resulted in
improved tensile strength for all filler loadings. This
improvement was due to the reaction involving
the —OH functionalities of the rice husk and the
acidic anhydride moieties of MAPP. The formulation
containing 1.2 wt% of MAPP and 40 wt% of rice
husk, with a MAPP/RH ratio of 0.03, demonstrated
the most significant enhancement in mechanical
performance. Therefore, the proportion of coupling
agent to filler is essential in determining the final
attributes of the composite. Moreover, Raghu and
others'® examined the effects of compatibilizers—
MAPP and m-TMI-g-PP on rice husk (RH)-filled
polypropylene composites. The inclusion of 5 wt% of
either compatibilizer, combined with 40-50% of RH
filler, showed a 40% rise in tensile strength for MAPP
and a 52% rise for m-TMI-g-PP in comparison to
the composites with no compatibilizer. Interestingly,
m-TMI-g-PP exhibited enhanced performance
compared to MAPP, which resulted from the reaction
involving the —OH functionalities of RH and the
isocyanate moieties of m-TMI-g-PP. They mentioned
that the carbamate ester bond formed between the
m-TMI-g-PP and the —OH functionalities of RH is
stronger than the anhydride ester linkage formed
between the MAPP and the —OH group of RH. In
a report by Tong and co-authors,'* the mechanical
characteristics of recycled HDPE (rHDPE) were
evaluated by integrating RH along with MAPE as
a compatibilizer. The composite containing 40 wt%
RH filler exhibited the maximum tensile modulus of
429.143 MPa and the maximum flexural modulus of
1717.508 MPa. However, the pure HDPE composite
demonstrated the highest impact strength (6.171
kJ/m?) compared to the RH-reinforced composites.
The decline in impact strength was related to the
restriction of base polymer flow in the presence
of the filler, leading to increased brittleness in the
resultant composite. Additionally, Bisht and others'%
examined the impact of alkali (NaOH) treatment
on the RH flour-filled epoxy resin. The mechanical
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performance of the material was improved with
increasing NaOH concentration, reaching an optimal
level at 8% NaOH. The composite containing 20
wt% RH modified using 8% NaOH exhibited a
remarkable increase in tensile modulus and tensile
strength, by 68.07% and 36.63%, respectively,
in comparison to the pure epoxy. Furthermore,
flexural properties, impact strength, and elongation
at break were significantly enhanced with higher
loading of RH treated with 8% NaOH. The observed
increase in tensile strength, impact strength and
elongation at break with RH loading contradicted
previously reported results and was attributed to
the alkali treatment, which increased the roughness
and hydrophobicity of the filler, enhancing its
compatibility with the epoxy resin. However, at
concentrations above 8% NaOH, the mechanical
properties declined due to the degradation of rice
husk properties from excessive alkali exposure.
In a recent study by Shah and co-authors,™? rice
husk and wood flour were incorporated in recycled
high-density polyethylene (rec-HDPE) to assess
their influence on the mechanical, thermal, and
flammability characteristics of the composites. The
findings indicated an improvement in mechanical
characteristics with increasing filler content. The
composite (rec-HDPE/RH/MAPE) with a composition
of 87/10/3 wt% displayed the best mechanical
characteristics, showing enhancements of 15.8%
in tensile modulus, 51.9% in flexural modulus,
11.9% in tensile strength, and 32.65% in impact
strength compared to unfilled rec-HDPE. The
SEM analysis further confirmed a homogeneous
distribution of rice husk within the base polymer,
with no evidence of agglomeration. The application
of MAPE as a compatibilizer enhanced the
interactions at the interface of RH and rec-HDPE,
resulting in superior mechanical attributes for the
composite. Various studies reveal that the careful
formulation optimization while considering various
parameters like filler-to-polymer ratio, compatibilizer
concentration, and processing conditions, is
very essential for achieving desired mechanical
characteristics of polymer composite. Incorporation
of other additives, such as montmorillonite nanoclay
can further enhance mechanical properties through
synergistic effects. When utilized with recycled
polymers like rec-HDPE, the combination of rice
husk (RH) and compatibilizers showed marked
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improvements in the mechanical features of the
base polymer. Such combinations can result in
high-performance, innovative, and environmentally
benign materials suitable for a range of industrial
applications.

Conclusion

Rice husk is an abundantly available field residue
which is obtained as a byproduct of rice milling.
Its integration into polymer composites offers
an excellent opportunity to convert this waste
into a valuable resource which contributes to
sustainability and environmental conservation.
Various studies have shown that the inclusion of rice
husk in polymer composites improves different
mechanical characteristics, such as tensile modulus,
flexural modulus, tensile strength, and impact
strength. Most of the research findings suggest
that the higher loading of untreated rice husk in
composites leads to increased tensile modulus
and flexural modulus, accompanied by reduction
in impact strength, tensile strength, and elongation
at break. However, the incorporation of treated
or modified rice husk or compatibilizer improves
all the mechanical characteristics of polymer
composite. The compatibilizers like maleic anhydride
polyethylene (MAPE), and m-TMI-g-PP improve
mechanical properties of the polymer composites by
enhancing filler dispersion and interfacial adhesion.
Further, the pre-treatment of RH with the alkali can
boost tensile and flexural properties by increasing
surface roughness and hydrophobicity, although
excessive treatment may degrade the filler. The
comparison between RH and other fillers, such as
talc, highlights the importance of filler characteristics
in determining the composite performance. In
recycled polymers like rec-HDPE, the use of RH
with a compatibilizer leads to marked improvements
in tensile and flexural strength, emphasizing the
importance of compatibilizer/filler ratios in optimizing
the mechanical performance of the material. These
formulations may result in innovative, high-efficiency
materials that are both sustainable and suitable
for numerous industrial applications. Careful
optimization of formulation along with consideration
of diverse parameters like the ratio between filler and
base polymer, the concentration of compatibilizer,
and the conditions of processing, is crucial for
attaining the preferred mechanical characteristics
of polymer composites. Moreover, the appropriate
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pre-treatment approach must be selected according
to the specific requirements, along with the fiber and
polymer characteristics, and the necessity to balance
performance, cost, and ecological impact.

Future Prospects

The future prospects for utilizing rice husk in polymer
composites is bright driven by its sustainability,
improved mechanical properties, cost efficiency,
biodegradability, eco-friendly nature, and versatile
applications. These factors suggest the rice husk-
integrated polymers as valuable materials for
sustainable and advanced engineering in the future.
Rice husk is a cost-effective raw material, particularly
in regions where rice cultivation is predominant. Its
utilization in polymer composites results in lower
production costs compared to conventional fillers or
reinforcement agents, which makes these materials
more economically viable. Polymer composites
that include rice husk offer a greener alternative to
conventional materials, especially in applications
where biodegradability is desired, such as packaging
or disposable items. Moreover, the use of rice
husk in recycled polymers, yielding exceptional
mechanical properties, presents an effective
approach for developing high-performance materials
while simultaneously promoting environmental
conservation by reducing waste and the demand
for new materials. The integration of rice husk
into a variety of polymer matrices presents vast
potential for diverse applications across industries,
such as automotive components, building materials,
agricultural equipment, and consumer goods. To fully
exploit its potential, further research and optimization
of the formulation are necessary. Factors such
as the ratio between filler and polymer, the
concentration of compatibilizers, and the processing
conditions must be carefully adjusted to achieve
the desired mechanical performance. Additionally,
it will be important to select the appropriate pre-
treatment methods for fibers and polymers to
effectively balance performance, cost, and ecological
considerations. Greener chemical alternatives and
optimized waste management strategies will be
essential for minimizing ecological damage while
maximizing the benefits of rice husk-reinforced
polymer composites. As research and innovation
continue to progress, the focus on refining these
composites will enhance their suitability for a broader
spectrum of applications.
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