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Abstract
The continuous advancement in science and technology necessitates the 
development of engineering materials tailored to specific requirements and 
cost-effective with minimal energy consumption. Consequently, there has 
been a surge in research dedicated to the fabrication of composite materials. 
Traditionally, the inclusion of synthetic fibers like glass or carbon is a common 
practice to reinforce composites and impart the necessary properties. 
However, their slow biodegradability poses environmental concerns, driving 
interest in natural fibers as substitutes. Rice husk (RH), a byproduct of rice 
milling, stands out as one of the most abundant agricultural wastes globally. 
Incorporating rice husk into polymer matrices is cost-effective and offers 
improved mechanical properties, low density and biodegradability etc. 
Various surface treatment techniques like alkaline treatment, benzoylation, 
acetylation and silane treatment etc., are explored to improve the integration 
of rice husk with base polymer, thereby imparting improved mechanical 
properties to composites. The present article provides an extensive review 
of literature regarding the prospective use of rice husk as reinforcement in 
various polymer matrices, highlighting primarily the mechanical attributes  
of polymer composites. Existing literature spanning the last 20 years has been 
extensively explored to analyse the impact of utilizing RH on the mechanical 
attributes of RH-reinforced polymeric materials. Future research directions are 
also highlighted, emphasizing the need for further exploration and optimization 
of rice husk-based composites for diverse industrial applications.
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introduction
Advancements in science and technology have 
made it essential to develop engineering materials  

that are both strong and light weight, tailored 
to specific requirements and cost effective with 
minimal energy usage. The need for such high 
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performance engineering materials has prompted 
a lot of research in developing composite materials. 
Recently, the composite sector has been expanding 
swiftly and has made a substantial impact on the 
materials industry. Composite materials result from 
the blending of two or more materials which may 
differ physically and chemically from each other 
but on combining create a product with optimal 
properties suitable for particular tasks. Specifically, 
polymer composites consist of a base polymer resin 
combined with various additives to achieve particular 
functions or objectives.1

Conventionally, synthetic fibers like glass or carbon 
fibers are utilized for reinforcing composites and 
for providing desired properties. However, in this  
era of global environmental awareness, the main  
disadvantage of these composites is their slow 
biodegradability. The need for sustainable develop- 
ment has fostered an inclination towards the 
utilization of natural alternatives instead of synthetic 
fibers such as glass in polymer composites. 
Researchers are recently focussing on natural fibers 
because they are biodegradable, readily available, 
economical, and lightweight.2

Natural fibers are grouped into two primary classes 
based on their source i.e. animal fibers and plant 
fibers. Plant fibers have gained more attention in 
research. Previous studies have reported a variety 
of plant fibers, including bast, wood, seed, leaf, fruit 
and grass or stalk fibers, etc.3,4

 
Employing natural fibers in composites offers 
several important benefits such as affordability, 
sustainability, lightweight nature, non-hazardous 
characteristics, non-abrasiveness, biodegradability, 
and recyclability.2,5,6 Despite this, the integration 
of natural fibers presents certain disadvantages 
including susceptibility to deterioration within the 
processing temperature range of the polymer matrix. 

This early thermal breakdown of agro-fibers 
imposes constraints on the permissible processing 
temperature, restricting it to below 200°C, thereby 
limits the range of polymers compatible with agro-
fibers.1,7 Additionally, when designing composites 
with agro-fibers for specific applications, it is crucial 
to account for other factors, like their inadequate 
moisture resistance. The hygroscopic nature of 
cellulose, the chief component in plant fibers, leads to 

changes in dimensions and subsequent degradation 
in mechanical performance of the composite.5,8–10 
Integrating the fibers into the polymer with a strong 
bond is essential to reduce these detrimental effects. 
The introduction of compatibilizer can prove to 
be an effective strategy for attaining such strong 
adhesive forces. Among various compatibilizers e.g. 
maleic anhydride grafted polymers, silane coupling 
agents, epoxy resins, organosilanes, isocyanates 
etc.,11–15  the maleic anhydride-grafted polypropylene 
(MAPP) has frequently been employed to enhance 
the adhesion at the interface of polymer matrices 
and agro-fibers. However, the continuous research 
is going on in exploring new alternatives.1,16,17

 
In this comprehensive review, the main focus is 
on the employment of rice husk (RH) in polymer 
composites. Paddy (unmilled rice) is among the most 
extensively harvested crops in the world leading 
to significant agricultural waste in the form of rice 
stalks and husks. Rice husk, a significant agricultural 
byproduct in major rice-producing nations, is 
generated as a secondary product during the rice 
milling process.18 In the milling of raw paddy, the rice 
kernel is physically separated from other components 
like edible parts such as the germ and bran, as 
well as the inedible part, namely the rice husk.8,19 

Despite their abundance, rice husk (RH) is usually 
discarded as waste and burnt in the fields, which 
causes environmental concern due to the release 
of toxic emissions, ashes, and vapours contributing 
to atmospheric contamination.20 Recognizing the 
environmental impact, it becomes necessary to 
explore the use of RH in polymer composites. 
Figure 1 illustrates the various applications of RH in 
polymer composites. The inclusion of RH in polymer 
matrices leads to superior attributes, including 
toughness, decreased weight, eco-friendliness, 
flame retardancy, and resistance to atmospheric 
conditions. Moreover, this integration makes the final 
products cost-effective.2,21–23 The use of extracted 
silica from rice husk has demonstrated success 
in enhancing the mechanical characteristics of 
composites.24 The present study primarily centres 
on reviewing the literature related to the mechanical 
attributes of polymer composites strengthened with 
rice husk with a particular emphasis on assessing 
the effectiveness of various treatment methods in 
enhancing the compatibility of the base polymer 
and the RH filler.
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Fig. 1: Applications of RH in polymer composites.

Rice Husk Composition
Rice husk is mainly composed of cellulose that 
features a broad spectrum of dimensions.25 It 
comprises of hemicellulose, cellulose, silica, lignin, 
solubles and moisture. The percentage composition 
and physical characteristics of RH are detailed in 
Table 1.18,19,26

Table 1: Percentage Composition and Physical 
Characteristics of Rice Husk.

Components Percentage 
 Composition (%)

Cellulose 25-48
Hemicellulose 18-25
Lignin 12-31
Silica (SiO2) 15-17
Solubles 2-5
Moisture Content 5-10

Physical Characteristics of Rice Husk

Particle size 20-50 (µm)
Surface Area 1 -50 (m2/g)
Density 0.09-3 (g/cm3)

Rice husk primarily comprises elemental substances 
like Carbon 37.05%, Hydrogen 4 to 5%, Oxygen 
31 to 37%, Nitrogen 0.23 to 0.32%, Sulphur 0.04 
to 0.08%, Silicon 9.01% and Silica 17 to 25%, ash 
22.29%, bulk density 0.09 to 3 (g/cm3) and hardness 
5 to 6 (Mohr’s scale).27–29 Different researchers 
have reported different compositions of the Rice 
Husk. It relies on several factors such as the rice 
variety, climatic conditions, fertilizer type, soil 
properties, testing methods, and the production 
area's geography.18,19,30,31

Research has demonstrated rice husk to be 
composed predominantly of organic matter, comp- 
rising about 75 to 90% lignin and cellulose, with the 
remaining portion consisting of mineral elements 
like silica, alkalis, and minor constituents.1,18,19,26,32,33

Several methods have been reported by the 
researchers for the analysis of lignocellulosic bio- 
mass composition.32–34 Krasznai et.al34 presented 
a historical perspective on various compositional 
analysis techniques and their detailed progress 
over time, including the Weende Method (1859), 
the Klason Method (1923), the Saeman sulfuric 
acid method (1944), the Saeman gravimetric 
method (1954), and the Laboratory Analytical 
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Procedures (LAPs) designed by the National 
Renewable Energy Laboratory (NREL) (2000). 
Cai et.al33 classified the methods of compositional 
analysis into three categories: analysis by sulfuric 
acid (H2SO4) hydrolysis; analysis by Near Infrared 
Spectroscopy (NIRS); and analysis by kinetics on 
thermogravimetry (TG). Sluiter et.al35 determined the 
structural carbohydrate and lignin content in biomass 
using NREL Laboratory Analytical Procedures based 
on sulfuric acid hydrolysis. Jin et.al36 reported the 
compositional analysis of rice straw using NIRS. 
Cai et.al37 also reported various methods of analysis 
using kinetics based on the distributed activation 
energy model. In a recent study, Malik et.al32 reported 
the analysis of rice husk biomass composition 
(cellulose – 38%, hemicellulose – 21%, lignin – 17%, 
ash – 15%, extractives – 8%, moisture content – 
9.8%) using NREL standard methods.

Since, rice husk contains a similar quantity of 
cellulose but lower lignin and hemicellulose levels 
compared to wood, it can be subjected to higher 
processing temperature than wood.1,18 Chemical 
examination of the non-organic part of rice husks has 
indicated that silica is the predominant component  in 
its non-crystalline form, with small amounts of alkali 
and alkaline earth metal oxides, iron and aluminium 
oxides.30,31 Rice husk exhibits exceptionally high ash 
content (10 to 20 %) in contrast to other biofuels. The 
ash consists predominantly of silica, ranging from 
87% to 97%, is highly permeable and has low density 
along with an extensively large external surface 
area.1,27 Its considerable silica content makes it a 
key material for industrial use.1

 
The rice husk serves as the tough outer layer 
enveloping the rice kernel, mainly covered in silica 
and marked by a thick outer layer and surface 
bristles. Additionally, a small portion of silica 
can be found in the central layer and the inner 
surface layer. The significant silica concentration 
in rice husk contributes to its enhanced rigidity and 
effective flame resistance.18,21,31 Differences in the 
hemicellulose, cellulose, and lignin composition 
within rice husks from various rice varieties lead 
to variations in the mechanical characteristics of 
reinforced  polymer.11

Surface Treatment Methods
A significant challenge has been observed in the 
preparation of RH composites which is attributed to 

their limited compatibility with hydrophobic matrices, 
primarily because rice husk has a hydrophilic nature 
and contains natural fats and waxes. Efficient 
integrations at the junction of rice husk and the 
base polymer are essential for ensuring effective 
stress distribution from the polymer structure to the 
strengthening material. This consequently leads 
to enhancements in the mechanical attributes of 
polymer blends containing rice husk.

According to research conducted by Yang and Kim,38 
RH-filled polypropylene-based composites have 
shown increased brittleness and reduced tensile 
strength, highlighting the adverse effects of low 
compatibility between RH and the matrix material. 
To resolve this issue, researchers have explored 
and suggested different pre-treatment methods. 
Depending upon the mode of action, the existing 
pre-treatment methods can be broadly categorized 
as follows:

Physical Pre-Treatment Methods
These approaches seek to alter the physical 
properties of the fiber, like its surface morphology, 
roughness, and porosity, without modifying its 
chemical composition. These methods include 
different processes such as the treatment of fibre 
surface with hot water, with high pressure steam 
followed by a rapid depressurization process, 
repeated freezing-thawing process, and exposure 
to ionized gas (Plasma treatment) etc. These 
processes modify the structural characteristics of the 
fiber and increase the accessibility of reactive areas 
of the fiber and the base polymer. Better interaction 
between the reactive sites of the additive and the 
base polymer results in enhanced adhesion and 
wetting which results in improved physical attributes 
of the blend. The appropriate pre-treatment method 
is determined by the distinctive features of fibers 
and the essential attributes of the resulting polymer 
blend. Hot water treatment helps to remove the 
surface impurities like oils, waxes, dust, and can 
partially remove the hemicellulose, which makes 
the fiber surface more accessible for bonding 
with hydrophobic polymer.39,40 Steam treatment 
subjects natural fibers to high-pressure steam, 
followed by rapid depressurization. This process 
causes the rupture of the lignocellulosic structure, 
removes a portion of the lignin and hemicellulose, 
which makes the fiber more porous with increased 
surface area and enhances its bonding potential 
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with the polymer.11,19,41,42 Steam treatment has been 
successfully employed by the researchers on rice 
husk to enhance the compatibility of the filler in 
particle board production and composite panels 
with enhanced mechanical properties.19 Panels 
made of rice husk treated with steam and phenol 
formaldehyde possess enhanced interfacial bonding 
and hence show superior modulus of rupture and 
elasticity compared to those treated with alkali.11,43 
The freeze-thaw process subjects natural fibers to 
repeated cycles of freezing (usually at temperatures 
below -20°C) and thawing (at or slightly above 
room temperature). The freezing process causes 
the moisture inside the fibers to swell, which forms 
the tiny fractures and amplifies surface roughness. 
Subsequent thawing releases the water, resulting in 
a more porous, rough-textured fiber surface, which 
leads to enhanced mechanical interlocking with 
the polymer.44 In the past few years, the plasma 
treatment has proven to be a powerful tool for 
enhancing the binding properties between natural 
fibers and polymers. Plasma treatment15,45 subjects 
the natural fibers to a plasma environment, which is 
created by applying energy commonly via an electric 
field to a gas such as nitrogen, oxygen, argon, 
helium etc. leading to the ionization of gas and the 
generation of reactive entities (free radicals, ions, 
electrons, and neutral atoms or molecules etc.).  
The type of reactive entities produced and their 
concentration depends upon the selection of gas and 
the operating conditions. Plasma treatment abrades 
the fiber's outer layer, which results in enhanced 
surface texture. It may introduce new functional 
groups (carbonyl, carboxyl, hydroxyl, amine etc.) 
onto the surface of the fiber, which may react with 
the base polymer, considerably improving adhesion 
at the interface. Additionally, plasma may induce 
cross-linking within the polymer networks on the 
surface of the fiber, leading to more stable linkages 
at the interface of the fiber and the polymer. Several 
studies13–15,31,41,45–47 have highlighted the beneficial 
impact of plasma treatment on the binding strength 
between natural fibers and base polymers. This 
process is both safe for health and the environment, 
and it effectively enhances the surface properties of 
fibers. However, due to the requirement of expensive 
and specialized equipment, it has not been explored 
for large scale production of composites.15,45

Chemical Pre-Treatment Methods
Different chemical pre-treatment methods have been 
reported by researchers to strengthen the linkage 
between the fiber surface and the polymer base 
such as alkaline treatment known as mercerization, 
acetylation, the addition of compatibilizers  e.g. maleic 
anhydride, benzoylation, silane treatment, peroxide 
treatment and permanganate treatment etc.1,48,49  

Of the various chemical treatments available, the 
alkaline treatment, known as mercerization, is 
especially notable for its efficacy and affordability.18,19 
When subjected to alkaline treatment using a NaOH 
solution, the fiber undergoes a process where its 
inherent fats and coatings are eliminated from the 
outer layer. This action exposes the reactive sites 
of the fiber, enhancing its ability to interact with the 
matrix material.18,19,43,50–56 A significant decrease in 
hemicellulose and lignin content on treating with 
(2 to 8% weight to volume) NaOH solution has 
been reported.18,19,51 The process of mercerization 
enhances the surface texture of the fiber which 
connects more efficiently to the polymer structure 
and enhances the physical performance of the 
blended material. The physical characteristics of 
the hybrid material depends on variables like alkali 
concentration, treatment temperature, and treatment 
duration.11,57

Benzoyl chloride is another chemical frequently used 
in fiber treatment, in addition to alkaline processes. 
Benzoylation involves the introduction of a benzoyl 
functional group at the fiber’s surface, which reduces 
the moisture affinity of the fiber and enhances 
its interaction with the non-polar base polymer.58 
Alkaline and benzoylation treatments have been 
studied on rice husk by various researchers.18,59 

Chemical treatment of rice husk with acetic anhydride 
i.e. acetylation has also been reported for increasing 
hydrophobicity of fibers obtained by cross-linking 
of acetic anhydride with hydroxyl groups of rice 
husk.11,60,61 The procedure of acetylation induces 
plasticization in cellulose fibers. It also enhances 
the size stability and water resistance of the polymer 
blend. It has been observed that the application 
of benzene diazonium salt to RH diminishes its 
hydrophilic properties and improves its integration 
with the polymer material.11,18,19
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Maziad et al.62 explored how including a silane 
bonding agent influenced the properties of a polymer 
base strengthened with rice husk. They revealed that 
the treatment of rice husk with silane led to superior 
mechanical performance compared to non-treated 
samples. In an another study,63 the incorporation 
of silane-treated rice husk into a polymer matrix of  
natural rubber exhibited a small enhancement in 
both flexural and tensile strength in comparison 
to those treated with the alkaline medium. In the 
bifunctional configuration of silanes, the alkoxysilane 
part engages with the hydroxyl groups, while the 
other terminal group participates in copolymerization 
with the polymer base. These chemical interactions 
promote the efficient distribution of loads across 
the filler and the polymer resin, thereby yielding a 
material characterized by enhanced mechanical 
properties.19

  
It has been reported that rice husk and rice straw 
composites exhibit improved performance when 
compatibilizers such as maleic anhydride are 
incorporated.11,49,59,62,64–67 Rosa and co-authors67 
prepared maleated polypropylene (MAPP) compo- 
sites with a maximum of 40 weight% loading of rice 
husk. As per the study, the integration of MAPP 
enhanced both the loss modulus and storage 
modulus of the product. Compatibilizers possess 
both hydrophobic and hydrophilic functional 
groups that interact with the reinforcement and the 
polymer to enhance their compatibility, resulting 
in better bonding and superior mechanical traits 
of the blended materials.19 Research studies68–71 
have reported the method of permanganation 
where mercerized cellulose fibers were soaked in 
acetone solutions containing varying amount of 
potassium permanganate (KMnO4). Permanganate 
treatment establishes radical centers within the 
cellulose present in natural fibers, which enhances 
its interaction with the base polymer. In addition to 
these methods, other compatibilizers and treatments 
including stearic acid, isocyanates, sodium chlorite 
and triazine derivatives, etc. can be used for treating 
cellulose depending upon the specific requirement 
in the corresponding composites.11

Though chemical methods are effective, they lead 
to issues like environmental effects, workplace 
safety, and managing toxic waste. The use of toxic 
chemicals also prompts regulatory and health 
concerns. Despite these drawbacks, chemical 

methods are still commonly used due to their 
confirmed efficiency and consistency in commercial 
production. To lower their ecological impact, it is 
essential to seek greener chemical alternatives and 
optimize waste management strategies, balancing 
their benefits with a reduction in environmental 
damage.15

General Applications of Rice Husk
Rice husk (RH) possesses a high calorific value of 
15217.20 KJ/Kg, and boiler efficiency comparable 
to that of coal. Therefore, Rice Husk proves to be a 
more cost-effective fuel than coal.72 The heat energy 
generated through the ignition and gasification of RH 
may be applied in multiple applications e.g. in steam 
generation and electricity generation.73,74 Rice Husk 
exhibits good potential for electricity generation, 
as 1 ton of RH can produce 1 MWH of electricity. 
Additionally, it can also function as a substitute 
energy source for domestic power requirements. 
Due to the high silica (silicon dioxide) amount found 
in RH, it has emerged as a valuable resource for 
various silicon compounds. RH is also utilized in 
the preparation of advanced materials such as SiN, 
silanes, SiC, Mg2Si, Si2N2O, elemental Si etc.75,76 

Rice husk can be employed as an organic fertilizer 
to enhance the crop yield as well as water utilization 
efficiency in agricultural fields. Because of the high 
content of dietary fibre (more than 30%), rice husk 
proves to be an abundant provider of proteins and 
minerals, rendering it a viable ingredient in the 
creation of functional foods. Utilization of rice husk 
in brick production increases porosity, which results 
in to superior thermal insulation.77 Studies have 
shown that rice husk can be processed to generate 
activated carbon with a microporous structure via 
physical or chemical activation methods.78–81 Rice 
husk possesses insolubility in water, good structural 
strength and excellent chemical stability because of 
the high content of silica. This characteristic qualifies 
it for an important role in the purification of water 
and wastewater treatment. Sorbents derived from 
rice husk have been found effective in removing 
six heavy metals, including Cu, Fe, Cd, Mn, Pb and 
Zn.82 Additionally, rice husk acted as an excellent 
adsorbent for eliminating various contaminants 
like pesticides, colorants, phenolic compounds, 
organic substances etc.83,84 Rice husk has also been 
recognized as a successful source for bioethanol 
production.1,76,85
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Mechanical Characteristics of Polymer Compo-
sites Reinforced with Rice Husk
Reported studies showing the influence of 
increasing Rice Husk (RH) loading on mechanical 
characteristics of reinforced polymer composite 
have been tabulated in Table 2. The mechanical 
characteristics examined include tensile modulus, 
flexural modulus, tensile strength, impact strength, 
and elongation at break. These properties are very 
important indicators of a material’s performance in 
various applications. Existing literature spanning 
the last 20 years has been extensively explored 
to analyse the contribution of utilizing RH to the 
mechanical characteristics of RH-integrated polymer 
composites.

Table 2 reveals that higher loading of untreated 
rice husk in composites leads to increased tensile 

modulus and flexural modulus, accompanied 
by a decline in tensile strength, impact strength, 
and elongation at break. The variation of tensile 
strength with higher loading of RH content has 
been shown graphically (Figure 2) by Yang et al.89  
It was proposed that the decline in tensile strength 
with higher rice husk flour content is because of the 
weak interaction at the interface of the non-polar 
base polymer and the hydrophilic filler. The addition 
of compatibilizers significantly improved the tensile 
strength as shown (Figure 3) by Yang et al.89 for 
tensile strength of RHF (30 wt%) reinforced PP 
composites at different contents of compatibilizers. 
Similar results for tensile and flexural strength 
(Figures 4 a & b) have also been reported by Raghu 
and co-authors105 for PP/RH composites.

 Fig. 2: Tensile strength of PP composites at 
various loading of RH89

Fig. 3: Tensile strength of PP/RHF (30 wt%) 
with weight percent of compatibilizing agents89

Fig. 4: (a) Tensile strength and (b) Flexural strength of PP/RH composites with untreated PP; 
Polypropylene grafted with MAPP; and Polypropylene grafted with m-TMI-g-PP compatibilizers105
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It was found that the inclusion of compatibilizers 
enhanced the flexural and tensile properties  
of composites effectively. The action mechanism of 
compatibilizer (Figure 5) has been proposed by Yang 

et al.89 It has been suggested that the compatibilizers 
form chemical bonds with the hydrophilic filler and 
are integrated into the polymer matrix by wetting.

Fig. 5: The action mechanism of compatibilizer in enhancing affinity at the interface 
of hydrophobic base polymer and hydrophilic filler89

From various reported results (Table 2), it can 
be interpreted that incorporation of pre-treated 
or modified rice husk or compatibilizers leads to 
enhanced mechanical performance of the polymer 
blend. Pre-treatment or modification of rice husk 
and inclusion of compatibilizers is very crucial in 
enhancing the mechanical characteristics of RH-
reinforced composites. It facilitates better adhesion 
of RH-filler with the base polymer thereby improves 
the interfacial bonding and overall composite 
performance. Toro and co-authors87 analysed the 
influence of adding the compatibilizer PP-g-MMI to 
RH/PP-Co-PE (rice husk-reinforced poly(propylene-
co-ethylene)). The inclusion of 5 wt% of PP-g-MMI 
to RH/PP-Co-PE resulted in a significant increase 
in tensile modulus, from 715 MPa to 1181 MPa, 
and tensile strength, from 16 MPa to 28 MPa. The 
Scanning electron microscopy (SEM) analysis 

indicated enhanced adhesion and greater phase 
consistency at the interface of RH and PP-Co-
PE components within the composite, which was 
attributed to the inclusion of PP-g-MMI. Similarly, 
Razavi-Nouri and co-authors88 investigated the 
mechanical performance of chopped RH (CRH) 
in PP. The formulation containing 3 php (part per 
hundred parts of polymer) of MAPP and 40 php of RH 
exhibited a notable increase of approximately 33% in 
tensile modulus, 16% in flexural strength, and 100% 
in flexural modulus, while the decrease in the impact 
strength was negligible. Further, Premalal and his 
team26 evaluated the mechanical performance of 
PP strengthened with rice husk powder and talc. 
They found that increasing the loading of both fillers 
improved Young’s modulus and flexural modulus 
but reduced yield strength and elongation at break. 
At similar loading levels, talc enhanced the moduli 
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and yield strength more effectively than the rice 
husk powder. This difference was attributed to talc's 
finer particle metrics and greater surface profile, 
which enhanced the bonding at the interface of 
the reinforcing material and the polymer substrate. 
In addition, Rosa et al.67 explored the impact  
of maleated polypropylene (MAPP) on polypropylene 
composites strengthened with rice husk flour. The 
inclusion of the compatibilizer MAPP resulted in 
improved tensile strength for all filler loadings. This 
improvement was due to the reaction involving 
the –OH functionalities of the rice husk and the 
acidic anhydride moieties of MAPP. The formulation 
containing 1.2 wt% of MAPP and 40 wt% of rice 
husk, with a MAPP/RH ratio of 0.03, demonstrated 
the most significant enhancement in mechanical 
performance. Therefore, the proportion of coupling 
agent to filler is essential in determining the final 
attributes of the composite. Moreover, Raghu and 
others105 examined the effects of compatibilizers—
MAPP and m-TMI-g-PP on rice husk (RH)-filled 
polypropylene composites. The inclusion of 5 wt% of 
either compatibilizer, combined with 40-50% of RH 
filler, showed a 40% rise in tensile strength for MAPP 
and a 52% rise for m-TMI-g-PP in comparison to 
the composites with no compatibilizer. Interestingly, 
m-TMI-g-PP exhibited enhanced performance 
compared to MAPP, which resulted from the reaction 
involving the –OH functionalities of RH and the 
isocyanate moieties of m-TMI-g-PP. They mentioned 
that the carbamate ester bond formed between the 
m-TMI-g-PP and the –OH functionalities of RH is 
stronger than the anhydride ester linkage formed 
between the MAPP and the –OH group of RH. In 
a report by Tong and co-authors,102 the mechanical 
characteristics of recycled HDPE (rHDPE) were 
evaluated by integrating RH along with MAPE as 
a compatibilizer. The composite containing 40 wt% 
RH filler exhibited the maximum tensile modulus of 
429.143 MPa and the maximum flexural modulus of 
1717.508 MPa. However, the pure HDPE composite 
demonstrated the highest impact strength (6.171 
kJ/m²) compared to the RH-reinforced composites. 
The decline in impact strength was related to the 
restriction of base polymer flow in the presence 
of the filler, leading to increased brittleness in the 
resultant composite. Additionally, Bisht and others104 

examined the impact of alkali (NaOH) treatment 
on the RH flour-filled epoxy resin. The mechanical 

performance of the material was improved with 
increasing NaOH concentration, reaching an optimal 
level at 8% NaOH. The composite containing 20 
wt% RH modified using 8% NaOH exhibited a 
remarkable increase in tensile modulus and tensile 
strength, by 68.07% and 36.63%, respectively, 
in comparison to the pure epoxy. Furthermore, 
flexural properties, impact strength, and elongation 
at break were significantly enhanced with higher 
loading of RH treated with 8% NaOH. The observed 
increase in tensile strength, impact strength and 
elongation at break with RH loading contradicted 
previously reported results and was attributed to 
the alkali treatment, which increased the roughness 
and hydrophobicity of the filler, enhancing its 
compatibility with the epoxy resin. However, at 
concentrations above 8% NaOH, the mechanical 
properties declined due to the degradation of rice 
husk properties from excessive alkali exposure. 
In a recent study by Shah and co-authors,110 rice 
husk and wood flour were incorporated in recycled 
high-density polyethylene (rec-HDPE) to assess 
their influence on the mechanical, thermal, and 
flammability characteristics of the composites. The 
findings indicated an improvement in mechanical 
characteristics with increasing filler content. The 
composite (rec-HDPE/RH/MAPE) with a composition 
of 87/10/3 wt% displayed the best mechanical 
characteristics, showing enhancements of 15.8% 
in tensile modulus, 51.9% in flexural modulus, 
11.9% in tensile strength, and 32.65% in impact 
strength compared to unfilled rec-HDPE. The 
SEM analysis further confirmed a homogeneous 
distribution of rice husk within the base polymer, 
with no evidence of agglomeration. The application 
of MAPE as a compatibilizer enhanced the 
interactions at the interface of RH and rec-HDPE, 
resulting in superior mechanical attributes for the 
composite. Various studies reveal that the careful 
formulation optimization while considering various 
parameters like filler-to-polymer ratio, compatibilizer 
concentration, and processing conditions, is 
very essential for achieving desired mechanical 
characteristics of polymer composite. Incorporation 
of other additives, such as montmorillonite nanoclay 
can further enhance mechanical properties through 
synergistic effects. When utilized with recycled 
polymers like rec-HDPE, the combination of rice 
husk (RH) and compatibilizers showed marked 
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improvements in the mechanical features of the 
base polymer. Such combinations can result in 
high-performance, innovative, and environmentally 
benign materials suitable for a range of industrial 
applications.

Conclusion
Rice husk is an abundantly available field residue 
which is obtained as a byproduct of rice milling. 
Its integration into polymer composites offers 
an excellent opportunity to convert this waste 
into a valuable resource which contributes to 
sustainability and environmental conservation. 
Various studies have shown that the inclusion of rice  
husk in polymer composites improves different 
mechanical characteristics, such as tensile modulus, 
flexural modulus, tensile strength, and impact 
strength. Most of the research findings suggest 
that the higher loading of untreated rice husk in 
composites leads to increased tensile modulus 
and flexural modulus, accompanied by reduction 
in impact strength, tensile strength, and elongation 
at break. However, the incorporation of treated 
or modified rice husk or compatibilizer improves 
all the mechanical characteristics of polymer 
composite. The compatibilizers like maleic anhydride 
polyethylene (MAPE), and m-TMI-g-PP improve 
mechanical properties of the polymer composites by 
enhancing filler dispersion and interfacial adhesion. 
Further, the pre-treatment of RH with the alkali can 
boost tensile and flexural properties by increasing 
surface roughness and hydrophobicity, although 
excessive treatment may degrade the filler. The 
comparison between RH and other fillers, such as 
talc, highlights the importance of filler characteristics 
in determining the composite performance. In 
recycled polymers like rec-HDPE, the use of RH 
with a compatibilizer leads to marked improvements 
in tensile and flexural strength, emphasizing the 
importance of compatibilizer/filler ratios in optimizing 
the mechanical performance of the material. These 
formulations may result in innovative, high-efficiency 
materials that are both sustainable and suitable 
for numerous industrial applications. Careful 
optimization of formulation along with consideration 
of diverse parameters like the ratio between filler and 
base polymer, the concentration of compatibilizer, 
and the conditions of processing, is crucial for 
attaining the preferred mechanical characteristics 
of polymer composites. Moreover, the appropriate 

pre-treatment approach must be selected according 
to the specific requirements, along with the fiber and 
polymer characteristics, and the necessity to balance 
performance, cost, and ecological impact.

Future Prospects
The future prospects for utilizing rice husk in polymer 
composites is bright driven by its sustainability, 
improved mechanical properties, cost efficiency, 
biodegradability, eco-friendly nature, and versatile 
applications. These factors suggest the rice husk-
integrated polymers as valuable materials for 
sustainable and advanced engineering in the future. 
Rice husk is a cost-effective raw material, particularly 
in regions where rice cultivation is predominant. Its 
utilization in polymer composites results in lower 
production costs compared to conventional fillers or 
reinforcement agents, which makes these materials 
more economically viable. Polymer composites 
that include rice husk offer a greener alternative to 
conventional materials, especially in applications 
where biodegradability is desired, such as packaging 
or disposable items. Moreover, the use of rice 
husk in recycled polymers, yielding exceptional 
mechanical properties, presents an effective 
approach for developing high-performance materials 
while simultaneously promoting environmental 
conservation by reducing waste and the demand 
for new materials. The integration of rice husk 
into a variety of polymer matrices presents vast 
potential for diverse applications across industries, 
such as automotive components, building materials, 
agricultural equipment, and consumer goods. To fully 
exploit its potential, further research and optimization 
of the formulation are necessary. Factors such 
as the ratio between filler and polymer, the 
concentration of compatibilizers, and the processing 
conditions must be carefully adjusted to achieve 
the desired mechanical performance. Additionally, 
it will be important to select the appropriate pre-
treatment methods for fibers and polymers to 
effectively balance performance, cost, and ecological 
considerations. Greener chemical alternatives and 
optimized waste management strategies will be 
essential for minimizing ecological damage while 
maximizing the benefits of rice husk-reinforced 
polymer composites. As research and innovation 
continue to progress, the focus on refining these 
composites will enhance their suitability for a broader 
spectrum of applications.
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