
Clean Technology for the Treatment and
 Modelling of Acid Mine Drainage Effluent 

PADMAJA MEGHAM

Department of Civil Engineering, Mahatma Gandhi Institute of Technology, Hyderabad, India.

Abstract
Acid Mine Drainage (AMD) exists as a phenomenon that involves the 
release of acidic water and metal conjugates, in and around mines, 
degrading the surrounding water environment. A real-time mining effluent 
is treated using low-cost adsorption technology using Combined Vegetable 
Waste Carbon (CVWC) as sorbent. Batch sorption was reviewed to know 
the effect of process factors on the removal of Cadmium (Cd), Zinc (Zn), and 
Iron (Fe). A two-level CCD (Central Composite Design) with three factors 
was adopted in the optimization of process factors. Also, the same factors 
were considered to review the ANNs (Artificial Neural Networks), model. 
A comparative statistical analysis was performed for the experimental 
data based on RMSE and R2 values in both RSM (Response Surface 
Methodology) and ANNs models. This study revealed that the ANNs 
model was well fit compared to RSM and this would probably reduce the 
experimental trials thereby reducing cumbersome calculations.
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Introduction
The economic development of any country mainly 
depends significantly on the mining industry.1 
Majorly, the mining operations generate vast 
quantities of wastewater as the result of AMD.2, 3

The significant effect of the mining is the degradation 
of natural resources.4 The amount of water used in 
the mining industry is huge and generally higher 

than what is predicted due to the mining processes 
involved.  Furthermore, the effluent from slag 
washing has high acidity (pH<4) and is polluted with 
elevated levels of heavy metals.5-7

The long-term effects due to metal-ions (Cd, Ni, 
Cu, Hg, Cr, Zn etc.) even in mild concentrations are  
bio-accumulation and heavy metal poisoning.8
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The conventional Physico-chemical processes 
were employed in the treatment of AMD like 
coagulation-flocculation, sedimentation, and 
filtration. Researchers have been researching for 
easy, clean, and low-cost viable treatment options 
since the last decade.9 In this context, adsorption 
technology would be a competent solution in the 
treatment of AMD effluent.10-12

The tedious batch experiments conducted for 
adsorption study can be optimized using statistical 
tool Response Surface Methodology (RSM)13, 14 
Recently, a study based on the tool optimized the 
following: -

• Adsorption of Fluoride wastewater using 
modified soil as adsorbent using central 
composite design RSM.15 

• Adsorption of cationic metals Copper and 
Zinc on silica and optimized batch tests using 
RSM.16 

• Dye sorption from aqueous solutions17 by 
using Nanocomposites as adsorbents.

On the other hand, artificial Neural Networks (ANNs), 
tools based on Artificial intelligence that are used 
by many researchers to simplify the mathematical 
calculations. ANNs were used for:- 

• Optimization and modeling the sorption 
of Copper and Lead using rice straw as 
adsorbent.18 

• Biosorption process using various agricultural 
wastes in treating the metal-polluted waters.19

A combination of RSM and ANNs was used by many 
researchers for process optimization, statistical 
modeling in the adsorption process.20

 
The current study illustrates the batch adsorption 
onto composite vegetable waste carbon (CVWC) 
as a low-cost treatment option for AMD effluent.21, 22 
There is a two-fold advantage, one is the reduction 
of vegetable wastes which end up in the open dumps 
and economic development by the utilization of the 
wastes for treating wastes. The process optimization 
was carried out using RSM and modeling was done 
by Feed Forward Back Propagation Neural network. 
The regression models in both RSM and ANN were 
compared.

Materials and Methods
Adsorbate and Adsorbent Preparation
The real time AMD effluent was gathered from Iron 
ore mines located at Bayyaram, Telangana, India. 
According to USEPA, Cadmium, Copper, Nickel, 
Arsenic, Chromium, Lead, Zinc, and Mercury are 
the most toxic heavy metals discharged into the 
water environment.23 The Characteristics of AMD 
effluent and US EPA effluent standards are shown 
in Table. 1. Three heavy metals Cadmium, Zinc, and 
iron (highlighted in Table. 1) are deviating from the 
US EPA standards, and hence those are considered 
for the study.

Table 1: AMD Effluent Characteristics and corresponding 
USEPA effluent disposal standards

Parameter Concentration US EPA
 (mg/L) standards (mg/L)

Cd 12.34 2.0
Cu 1.54 3.0
Zn 96.5 5.0
Cr 0.05 0.1
Co 0.023 0.05
Ni 0.13 3.0
Fe 146.75 5.0
Pb 0.013 0.1
Hg 0.0003 0.01
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A 100% dilution ratio was considered for the 
laboratory scale batch study. The Composite 
Vegetable Waste (CVW) was used as adsorbent 
collected from local vegetable markets. The CVW 
was then dried sufficiently under sunlight, washed 
with plenty of water to remove any grit or sand. Again, 
the mass was air-dried, followed by oven drying at 
110°C overnight. The recovered mass was roughly 
ground after cooling and was carbonized at 450°C 
for 2 hours. The so obtained product was Composite 
Vegetable Waste Carbon (CVWC).

Experimental
A laboratory-scale batch study was carried out for 
the elimination of Metal-ions from real-time AMD 
effluent after subsequent dilution (sample volume 
(v) 100 mL).24, 25 The effect of process parameters 
for instance pH, adsorbent dose(M), the contact 
time was reviewed. The ranges selected for the 
parameters are pH (2 to 9), adsorbent dose  
(1-10 mg), and contact time (0.5 to 3 hours). The 
pre concentration (Co) and post concentration(Ce) 
of the metals were obtained by spectrophotometry, 
and their % removal (%R) and adsorption 
capacity qe(mg/g) was analysed as given in  
Equation (1) ad (2).

 ...(1)

...(2)

RSM Optimization
The 2-factorial 3-level central composite design in 
RSM used to optimize process factors. The effect 
of each factor, as well as the interaction, was 
studied. The optimum values of all the process 
variables coded values (-1, 0, +1) were obtained by 
replicating the experiments six times at center points. 
A quadratic expression is used in the optimization 
process as shown in Equation (3)

...(3)

Where, yp is the response, i.e. the % removal and 
adsorption capacity, β0 (constant),  βa (linear),βaa 

(quadratic)  and βab  (interaction)  are coefficients, 
respectively.xa  (a= to 4) is the independent 
factor affecting the response.  The coefficient of 
determination (R2) was obtained from the ANOVA 
method in RSM using Design Expert® software.

ANNs Modelling
Matlab® environment was employed for modeling 
the experimental feed results using Feed Forward 
back propagation neural network. Of many forms 
of algorithms, the Levenberg-Marquardt (LM) was 
employed as it was more appropriate and considered 
for modeling. A total of 20 samples were considered 
14 for training, three each for validation and testing. 
The performance of batch tests was analyzed using 
the ANNs model, and regression analysis compared 
to RSM.

Results and discussion
Experimental
The experimental details given in Table 2 highlights 
the effect of pH, adsorbent dose, contact time on 
multi-metal removal. The Optimum pH for Cd, Zn, 
and Fe was 5.5. The adsorbent dose was 5.5 for Fe 
and 9 for Cd and 10 for Zn. The optimum contact 
time was at 1.75 Hrs for all the metals. Fig. 1 (a), 
(b), (c) explains the effect of selected factors on the 
removal (%R).

CCD Design 
Tests were performed on factors and their effect 
on the sorption onto CVWC. A 3-level full factorial 
central composite face-centered design and  
25 runs with 3 (-1, 0, +1) center points was used 
to realize the effects of many process parameters 
upon sorption of the three metals Cadmium, Zinc 
and Iron.27,28 Tests (20) were conducted randomly 
as per the selection by factorial design, as shown in  
Table 2. The effect of test factors like pH, Adsorbent 
dose, and contact time were studied upon the % 
removal using Origin® Pro Software.

Final Equation in Terms of Coded Factors

 %R (Cd) = 84.70 + 8.16 A + 0.9210 B + 7.39 
C + 6.45 AB + 5.44 AC + 11.93 BC - 18.78 
A2 + 0.2155 B2 - 11.96 C2



110MEGHAM, Curr. World Environ., Vol. 15 (Special Issue 1), 107-114 (2020)

 %R (Zn) = 84.97-2.40 A + 6.91 B + 2.37 C + 
0.0775 AB + 4.59 AC + 8.82 BC - 12.89 A2 + 
0.2000 B2 - 1.08 C2

 %R (Fe) = 85.78 + 3.13 A + 14.15 B + 0.2950 
C - 3.14 AB + 0.1825 AC + 11.43 BC -22.62 
A2 - 2.67 B2 + 6.93 C2

Fig.1: Effect of a) pH, b) Adsorbent Dose and c) Contact time on %R (Experimental)

Table 2: Effect of factors on % R (Experimental, RSM and ANNs) for Cd, Zn and Fe

Run pH Ads.  Contact           %R (Cd)          %R (Zn)            %R (Fe)
 (A) Dose Time 
  (mg)  (Hrs) Exp RSM ANNs Exp RSM ANNs Exp RSM ANNs
  (B) (C)
  
1 9 5.5 1.75 86.45 85.89 85.77 78.45 79.21 78.76 67.45 66.89 67.21
2 5.5 1 1.75 54.33 54.76 53.89 67.33 67.45 67.19 55.45 55.22 55.33
3 5.5 10 1.75 93.56 92.80 93.06 93.45 93.90 92.32 90.35 90.56 90.76
4 5.5 5.5 1.75 91.76 90.99 90.96 85.43 85.11 85.41 91.56 91.89 91.77
5 5.5 5.5 1.75 92.33 92.78 92.58 86.43 86.04 86.07 91.41 91.33 91.34
6 2 1 0.5 72.16 72.57 72.79 81.32 80.80 82.10 63.22 63.15 63.25
7 9 1 0.5 68.34 68.65 69.05 64.66 64.34 64.32 75.38 74.45 75.87
8 9 10 0.5 34.56 32.98 34.06 53.65 53.21 53.90 67.23 67.78 67.16
9 2 10 0.5 43.22 43.64 43.48 78.54 78.09 78.21 78.99 79.49 78.54
10 5.5 5.5 3 89.32 90.02 89.37 79.56 80.05 79.56 88.9 88.54 89.43
11 5.5 5.5 1.75 92.67 92.21 91.59 86.77 86.22 86.12 94.89 95.12 93.78
12 9 1 3 44.74 43.90 43.99 57.63 57.32 57.36 44.76 44.24 44.23
13 5.5 5.5 1.75 90.56 90.78 91.21 89.51 90.03 88.98 91.31 91.53 91.81
14 2 10 3 45.56 45.34 45.44 88.41 88.77 88.11 53.34 53.61 53.62



111MEGHAM, Curr. World Environ., Vol. 15 (Special Issue 1), 107-114 (2020)

The predictions about each factor and their response 
arrived from the equation in relation to the coded 
factors. The coded levels +1 and -1 denotes high to 
low with reference to coded factors.

ANNs Modelling
Back propagation Neural Network was used for 
modeling of experimental data onto CVWC.25, 26  
The network has 3 input and output neurons, the 
hidden and output layer has 10 and 3 neurons, 
respectively.

Comparison of RSM and ANNs Models
The regression analysis for tedious problems can 
be analyzed using RSM and ANNs. These models 
were employed to investigate the adsorption of AMD 

wastes onto CVWC.26-28 The statistical analysis 
based on RMSE and R2 were calculated based 
on the following equations for RSM and ANNs 
presented in Table 3.

Where n refers to the number of points, yi being 
the predicted (RSM & ANNs) value, ydi is the actual 
(experimental) value, and ym is the mean of the 
actual values.

15 5.5 5.5 1.75 91.34 91.86 91.41 90.48 90.66 90.32 89.77 89.05 89.09
16 5.5 5.5 0.5 34.22 33.81 34.06 78.65 77.79 78.16 76.09 77.31 75.74
17 9 10 3 89.33 89.01 88.21 90.44 90.67 90.17 93.65 93.67 93.96
18 5.5 5.5 1.75 93.43 93.87 93.53 90.3 90.21 90.87 96.57 96.34 96.32
19 2 1 3 57.45 57.71 56.18 64.45 64.87 64.34 43.21 43.45 43.34
20 9 1 1.75 23.45 24.78 22.63 56.15 56.64 56.35 38.45 39.17 39.17

Fig.2: Experimental %R versus predicted (RSM & ANNs) for a) Cd b) Zn and c) Fe
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The RMSE for RSM and ANNs were reported to 
be 0.346 and 1.258 respectively; this shows that 
the values of ANNs deviated compared to RSM. 
R2 (coefficient of correlation) for RSM and ANNs 
were obtained to be 0.89 and 0.96, respectively.  
The regression analysis gives an idea about how 
well data fits the model. Fig. 2 (a), (b), (c) convey the 
comparison for removal (%R) for experimental, RSM, 
and ANNs predicted values. No significant deviation 
from the experimental data was found.

Though RSM and ANNs models fit well to 
experimental data, comparatively, the ANNs 
model was more dominant than RSM. However, 
RSM is advantageous over ANNs in depicting the 
relationships between various operational factors in 
terms of responses. However, the major drawback 
of RSM is that it presumes only a quadratic form 
of non-linear correlation. However, ANNs have an 
inbuilt system that can naturally encapsulate most 
of the non-linearity, in contrast to RSM.

Conclusion
The study supports that combined vegetable waste 
carbon (CVWC) is effective in the Treatment of AMD 

effluent in an eco-friendly manner. The laboratory-
scale batch study was successful in the elimination 
of the three metals, i.e. Cadmium, Zinc, and Iron from 
AMD effluent. The experimental data revealed the 
highest removal was observed for Iron at an optimum 
pH and the adsorbent dose of 5.5 and at a contact 
time of 1.75 hours, respectively. RSM and ANNs 
models were employed to forecast the adsorption 
efficiency of the metals from wastewater onto CVWC. 
RMSE and R2 were used to predict the working of 
RSM and ANNs models. The plots with experimental 
versus predicted data revealed a good correlation 
with the experimental data.
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